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The evolution of an unbounded inviscid free surface subjected to a velocity potential of
Gaussian form and also to the influence of inertial, interfacial and gravitational forces
is considered. This construct was motivated by the occurrence of lung haemorrhage
resulting from ultrasonic imaging and pursues the notion that bursts of ultrasound
act to expel droplets that puncture the soft air-filled sacs in the lung plural surface,
allowing them to fill with blood. The tissue adjacent to the sacs is modelled as a liquid
and the air–tissue interface in the sacs as a free surface. The evolution of the free
surface is described by a boundary-integral formulation and, since the free surface
evolves slowly relative to the bursts of ultrasound, they are realized as an impulse at
the free surface, represented by the velocity potential. As the free surface evolves, it is
seen to form axisymmetric surface jets, waves or droplets, depending upon the levels
of gravity and surface tension. Moreover the droplets may be spherical and ejected
away from the surface or an inverted tear shape and fall back to the surface. These
conclusions are expressed in a phase diagram of inverse Froude number Fr−1 versus
inverse Weber number We−1. Specifically, while axisymmetric surface jets form in the
absence of surface tension and gravity, gravity acts to bound their height, rendering
them waves, although instability overrides the calculation prior to its reaching that
bound. Surface tension acts to suppress the instability (provided that We−1 > 0.045)
and to form drops; if sufficiently strong it can also damp the evolving wave, causing
it to collapse. The pinchoff which effects spherical drops is of power-law type with
exponent 2/3, and the universal constant that relates the necking radius to the time
from pinchoff, thereby realizing a finite-time singularity, has the value K =0.45±0.025.
Finally, drops can occur once the mechanical index, a dimensional measure used in
ultrasonography, exceeds 0.5.

1. Introduction
Ultrasonic imaging has long been a standard procedure in clinical medicine. It is

popular because of its ease of use and the insight it provides, with no documented
health risks or side effects. Yet the safety of ultrasonography has lately come under
scrutiny following the publication of experimental results reporting lung hemorrhage
in animals exposed to ultrasound at acoustic-pressure levels typical of human
diagnostics. The animals include mice (Child et al. 1990), monkeys (Tarantal &
Canfield 1994), rabbits (Zachary & O’Brien 1995), pigs (Harrison et al. 1995) and
rats (Holland et al. 1996). Mechanisms suggested to explain these observations are
broadly classified into thermal and non-thermal, the non-thermal mechanisms being
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Figure 1. Diagrams of the lung: (a) a cross-section through the chest showing the pleural
cavity and lung. The region of the circle in (a) is shown larger in (b), which is a schematic
photomicrograph illustrating the anatomy of the visceral pleura and contiguous septa. The
arrow denotes the direction of acoustic propagation. The box shows the air–blood barrier at
the interface of tissue and air modelled herein. The horizontal bar is of length 100 µm. The
walls separating the alveola are several hundred nanometres thick and are not drawn to scale.

further broken down into cavitation-induced and non-cavitation-induced mechanisms.
Studies by Child et al. (1990) and Hartman et al. (1990), however, indicate that thermal
effects are not likely to be responsible for lung hemorrhage; accordingly extensive
experiments by Zachary et al. (2000b) led to the conclusion that lung hemorrhage is
not caused by inertial cavitation. The purpose of the present work, therefore, is to
explore a plausible non-cavitational damage mechanism.

The mechanism we consider is built around the notion that ultrasound focused
near a tissue–liquid interface acts to expel tiny droplets (of blood or an other fluid),
which then puncture the soft bubble-wrap-like sacs of the lung pleural surface,
allowing them to fill with blood. The knowledge that droplets are emitted from
an acoustically excited air–liquid interface dates from Wood & Loomis (1927), who
reported the formation of a fog of droplets on the surface of thin liquid films subjected
to ultrasound. Lang (1962) subsequently conducted a similar set of experiments on
both liquid films and deeper liquid pools, observing the formation of fine dense
fog when the film is continuously excited by ultrasound in the frequency range
10–800 kHz. More recently, Elrod et al. (1989) reported the use of a high-intensity
focused acoustic beam to eject isolated droplets from the free surface of a liquid,
using ultrasonic transducers operating over the range 5–300 MHz, which includes
the operating frequencies of ultrasonic medical devices (2–12 MHz). Furthermore,
rather than applying continuous forcing as used previously, these authors used bursts
(often denoted tone bursts) of focused ultrasound in an effort to expel single droplets,
relevant to inkjet printing. Tone bursts of focused ultrasound are also used in
diagnostic ultrasonography.

The lung lives in the pleural cavity and grows to fill it, as shown in figure 1(a),
and encasing the lung is a single-celled membrane called the pleura, composed of
two layers, the visceral pleura immediately adjacent to the lung and then the parietal
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pleura. At the surface of the lung, alveolar septa anatomose with the visceral pleura
to form a collection of air-filled sacs (alveoli), seen in figure 1(b), the linings of which
form the air-blood barrier. The thickness of this barrier in a human being is about
750 nm (Zachary et al. 2000a). Together these layers form the pleural surface, the
cross-section of which resembles foam or bubble wrap. Thus, since human tissue is
largely composed of liquid, albeit in a congealed form, and since sacs in the lung
pleural surface are gas filled and adjacent to a gas cavity, our simplistic metaphor for
the chest encasing the lung is a liquid, while that for the pleural-surface–air interface
of the lung is the free surface of the liquid.

Consider then a Newtonian liquid in which ultrasound (from an immersed
transducer whose axis of symmetry is normal to the free surface) is brought to
a focus near the free surface. Our task is to question under what conditions bursts
of ultrasound eject drops from the free surface and to view those findings in the
context of haemorrhage at the lung surface. However, in doing so we shall not
restrict our study solely to conditions associated with lung haemorrhage but rather
look in general at impulsively generated waves and drops.

Multiple time scales enter the problem: the shortest one, Tλ say, characteristic of
the period of the ultrasound (about 0.3 µs); a second, Tb, indicative of the tone burst
(about 20Tλ–50Tλ); and a much longer one, T , representative of the evolution of the
free surface (about 0.1 s). Thus while Tλ � Tb always, of interest here is the situation
Tλ � Tb, such that Tλ � Tb � T . Events that occur over a time Tb are then, in relation
to T , essentially averaged over Tb. Thus harmonic fluctuations from the transducer
vanish, but quadratic wave–wave (or higher) nonlinearities remain; moreover, since
Tb � T , they are felt on the time scale T as an impulse in pressure that sets the system
into motion. Likewise, while the substrate is necessarily compressible to harmonic
inputs on the time scale of the ultrasound, it is incompressible from the Tb-averaged
viewpoint of the evolving free surface.

The ultrasound is focused, not to a point but rather to a zone whose length scale
L = hλ is, at a minimum, of the order of the wavelength λ of the ultrasound (about
500 µm), implying that the constant h � O(1). L is thus vastly smaller than the overall
size of the lungs albeit larger than individual sacs in the pleural surface. However,
since the walls of the sacs are only several hundred nanometres thick, they will not
obstruct the ultrasound; indeed the ultrasound sees only an unbounded region of gas.
Thus from the viewpoint of our construct, and since the impulse is radially symmetric,
we pose the initial-value problem as being in an unbounded axisymmetric domain.

Surface tension is likely to play a key role in the formation of droplets, and
gravity also, but the role of viscosity is less clear. We may grant that the pinchoff
process to individual drops is viscous, but the absence of a solid boundary and the
impulsive nature of the problem are more indicative of an inviscid evolution to the
point of pinchoff. To pursue this further we note that, were viscous terms to be
retained in the equation of motion, they would scale, relative to the curvature terms,
as We/Re = (ν2ρ/hλσ )1/2We1/2. Here Re is the Reynolds number, defined using the
length and velocity scales to be introduced with the Weber number We in § 2.2, and ν

is the kinematic viscosity (the other symbols are defined later). It readily follows that
We/Re � 1, in support of an inviscid model.

Finally, in the absence of a rigid boundary and in the absence of buoyancy, there
is no way to create or diffuse vorticity and hence the fluid remains irrotational. In
consequence we investigate impulsively generated axisymmetric jets, waves and drops
from the free surface of an unbounded inviscid irrotational liquid subject to the
interplay of inertial, interfacial and gravitational forces.



380 K. K. Tjan and W. R. C. Phillips

Little attention has been paid to nonlinear axisymmetric standing waves at a free
surface, although Cinbis, Mansour & Khuri-Yakub (1993) considered them with a
view to measuring surface tension and numerical techniques to handle them date
from Dommermuth & Yue (1987).

Drop formation, however, has received considerable attention, albeit drops
induced by gravitational or periodic accelerative forcing over length scales which
are fixed or periodic. Examples include viscous dripping (Wikes, Phillips & Basaran
1999; Brenner et al. 1997) and liquid-jet breakup (Lin & Reitz 1998), where the
geometry of the exit nozzle imposes a length scale for the problem. Vibration may
also stimulate the formation of droplets through parametric excitation (Faraday
1831). Here too the domain is finite and although the forcing is time periodic, it is
continuous and at frequencies well below those of ultrasound (see e.g. James, Smith &
Glezer 2003). These constructs are vastly different from ours and we expect the
dynamics which effect droplet formation to likewise differ, although not the details
of the capillary pinchoff of the drop. Indeed, capillary pinchoff is likely to be
found in all studies. Pinchoff has been studied on its own (by e.g. Eggers 1993;
Brenner, Lister & Stone 1996; Monika & Stee 2004) and in the context of ink-jet
printing (by e.g. Day, Hinch & Lister 1998; Basaran 2002; Leppinen & Lister 2003).

The only study concerned with impulsively generated drops on an unbounded
domain would appear to be that of Elrod et al. (1989), which includes both
experiments and modelling. These authors approached the topic from the viewpoint
of inkjet printing and began by constructing a simple theory to relate, inter alia, the
diameter and the initial velocity of the drop to the ultrasound frequency. They then
developed a more elaborate numerical model that predicts the actual time evolution
of the surface. In this model they ignored gravity and introduced a scaling that leaves
the governing equations devoid of parameters. This means that solutions for intensity
profiles of the same shape can be scaled according to the magnitude of the intensity.
Their findings compare well with experiment.

But such a scaling requires that Φ , which measures the strength of the impluse
(see § § 2.2 and 5.3 below), should scale with the square root of the surface tougent
σ , whereas we would like to fix Φ and vary σ . We are also interested in the role of
gravity. For that reason we work with a non-canonical two-parameter set, namely a
Weber number We (that captures σ ) and a Froude number Fr that includes gravity;
for precise definitions see § 2.2. We can then investigate the zero-gravity no-surface-
tension double limit, We−1 → 0, Fr−1 → 0 (§ 4.1); the single limits We−1 → 0, Fr−1 �= 0
(§ 4.2), We−1 �= 0, Fr−1 → 0, the latter of which which recovers Elrod et al. (1989)
(§ 4.3); and the two-parameter set We−1 �= 0, Fr−1 �= 0 (§ 4.4).

Our problem involves solving the Laplace equation (2.1) subject to the Bernoulli
equation (2.2) on the free surface. Equation (2.1) is best recast into a boundary-integral
form and we do so in § 2.3 in a manner akin to that of Baker, Meiron & Orszag (1984).
This technique has been recently employed by others (e.g. Hou, Lowengrub & Shelley
1994, 1997, 2001; Nie & Baker 1998; Nie 2001); but because their work is formulated
in either a finite or periodic domain, it cannot be readily adapted to our problem,
which lives on an unbounded domain. Moreover, while the evolution of the free
surface is monitored through a single variable (the surface-tangent angle) in their
problems, for reasons explained in § 3.2 it is best that we monitor two variables, the
radius and elevation. This we do in the manner of Lundgren & Mansour (1988). Of
course for numerical reasons it is desirable that we too work on a finite domain and
for that reason we construct an invertible mapping to a finite domain (see § 3.1) which
yields the appropriate asymptotic behaviour of the solutions, a feature we investigate
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in § 2.5. Our method for computing numerical derivatives of the surface and thus
of the surface curvature, which is crucial to numerical stability, is outlined in § 3.2.
Results are given in § 4, followed in § 5.1 by a discussion of the finite-time singularity
which occurs at pinchoff. Critical We (Weber number) numbers and what they mean
vis à vis lung haemorrhage are discussed in § § 5.2 and 5.3.

2. Formulation and analysis
2.1. Governing equation

We consider an axisymmetric fluid domain D∗ (r∗[0, ∞), z∗(−∞, ∞)), which contains
an inviscid incompressible liquid of density ρ. Gravity g acts in the negative z∗

direction and the free surface, which we identify as S, is initially located at z∗ = 0.
The coefficient of surface tension on S is σ . Of interest is how the free surface evolves
when D∗ is subjected to a spatially dependent impulse at time t∗ = 0.

We assume, ab initio, that the fluid is irrotational; this permits a velocity potential
ϕ∗ in D∗ to be defined in terms of the velocity vector u∗ = ∇∗ϕ∗, while incompressibility
∇∗ · u∗ =0 demands that ϕ∗ satisfy the Laplace equation

∇∗2
ϕ∗(r∗) = 0, where r∗(r∗, z∗) ∈ D∗. (2.1)

In such circumstances, and under conservative body forces, the momentum equations
reduce to the unsteady Bernoulli equation,

∂ϕ∗

∂t∗ +
1

2
u∗ · u∗ +

p∗

ρ
+ gz∗ = 0 where r∗(r∗, z∗) ∈ D∗, (2.2)

which gives an explicit expression for the pressure p∗ at any point in D∗.
The initial-value problem is completed by a boundary condition which requires

for all t∗ that u∗ vanish at infinity. Two further boundary conditions apply on the
interface S a kinematic condition which requires that the velocity normal to the fluid
surface be identical to that of the fluid particle at the surface, i.e. that the surface
be a material surface; and a dynamic condition which requires that the pressure
on S be constant. With no loss we set this constant to zero and utilize it in the
Laplace–Young condition (Young 1805), which requires that surface tension balance
the pressure difference across the interface; (2.2) then becomes

∂ϕ∗

∂t∗ +
1

2
u∗ · u∗ +

σ

ρ
κ∗ + gz∗ = 0 on S, (2.3)

where κ∗ is the mean curvature of S; in the meridional direction this is κ∗
r and in

the azimuthal direction it is κ∗
ϑ (see (3.3) below). Our task is to monitor the evolution

of S when the the fluid is impulsively set into motion by the imposition of an initial
velocity potential ϕ∗

0 = ϕ∗(r∗, z∗, t∗)|t∗=0 throughout D∗.

2.2. Non-dimensionalization

Since the fluid domain is unbounded the geometry presents no natural length scales.
However, time and length scales are introduced by the initial velocity potential ϕ∗

0

imposed on the system, where Φ = ϕ∗
0 |max, say, characterizes the strength and L the

spatial extent of ϕ∗
0 . Then, since Φ has the dimension of length squared per unit

time, the time scale T follows as T ≡ L2/Φ , with velocity scale ΦL−1, allowing us to
write r∗ = Lr , z∗ = Lz, κ∗ = L−1κ , ϕ∗ = Φϕ, t∗ = T t and u∗ = ΦL−1u, where r , z, κ , φ,
t and u are dimensionless quantities. Finally, we note that ϕ∗

0 ∝ p∗/f where f is the
acoustic frequency (see § 5.3).
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Equation (2.3) then becomes

∂ϕ

∂t
+

1

2
u · u +

κ

We
+

z

Fr
= 0. (2.4)

Two dimensionless groups are evident in (2.4), the Weber number, We =Φ2ρ(Lσ )−1,
which measures the relative importance of inertial and interfacial forces, and the
Froude number Fr =Φ2/(gL3), which measures the relative importance of inertial
and gravitational forces. Fr may further be written as We/Bo, where the Bond
number Bo = ρgL2/σ measures the ratio of gravitational and surface-tension forces.

2.3. Boundary integral equation

Since our main interest is in the evolution of the surface S, a computationally
efficient way to solve (2.1) subject to the initial and boundary conditions is through
a boundary-integral formulation. In such a formulation, a volume integral over the
solution domain D is converted into a surface integral and the dimensionality of the
problem is reduced by one, to wit ϕ(r, z, t) �→ φ(s, t), where s is the arc length along
Γ , the curve which describes S in the (r, z)-plane, with r = r(s) and z = z(s).

In constructing this mapping we first note that the fundamental solution to
the Laplace equation (2.1) is the Green’s function G(r |r ′) = −(4π|r − r ′|)−1. Here
r = (r, z, θ), where r and z are defined above and θ is the azimuthal angle, measured
anticlockwise in the (r, z)-plane. We next note from classical results in potential theory
(see e.g. Jaswon & Symm 1977) that φ may be expressed as a distribution of dipoles
of strength µ along the surface Γ .

When written in this form, the potential φ satisfies the Laplace equation everywhere
except at the source point r ′ and is discontinuous across the line Γ . Nevertheless,
we may use the Plemelj formula to define φ on Γ as the value in the limit as r
tends to Γ from within D. However, the integrand is now singular at the point r = r ′,
rendering the integral a principal-value integral (denoted

∫
−). For numerical reasons it

is best to ‘desingularize’ the integrand and to that end we subtract a complementary
principal-value integral which can be evaluated analytically. We then find that

φ(r) =
1

2
µ(r) +

∫
Γ

[µ(r ′) − µ (r)]n′ · ∇r ′ G(r |r ′) dΓ ′, (2.5)

which is a Fredholm integral equation of the second kind; n is the unit outward
normal and primes denotes quantities that vary with the integration variable.

Since the problem is posed in an axisymmetric domain, we can make further
progress analytically by calculating the azimuthal contribution to the integral. We
proceed by first writing dΓ ′ as r ′ dθ ′ ds ′, where s is the surface arclength measured
radially outwards from r =0. Axisymmetry then demands that both φ and µ be
functions solely of s, which allows us to factor µ(s ′) − µ(s) out from the azimuthal
integral, so that

φ(s) =
1

2
µ(s) +

∫ ∞

0

[µ(s ′) − µ(s)]Kφ(s|s ′) ds ′, (2.6)

where

Kφ(s|s ′) =

∫ 2π

0

n′ · ∇r ′ G(r |r ′)r ′ dθ ′.
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Of course we must still evaluate Kφ . To do so we first express r and n in Cartesian
coordinates as

r =

⎛
⎝r cos θ

r sin θ

z

⎞
⎠ and n =

⎛
⎝nr cos θ

nr sin θ

nz

⎞
⎠,

where nr and nz are the radial and vertical components of the unit outward normals;
Kφ then becomes

Kφ(s|s ′) =
r ′

πA3

{
(r ′n′

r − (z − z′)n′
z)

E(k)

1 − k
+

rn′
r

k

[
2 − k

1 − k
E(k) − 2K(k)

]}
,

where A=
√

(r + r ′)2 + (z − z′)2 and k = 4rr ′A−2. Here K(k) and E(k) refer
respectively to complete elliptic integrals of the first and second kind. It is also
understood that r and z are functions of s while r ′, z′, r ′

r and n′
z are functions of s ′.

The formulation is now complete. However, for numerical implementation it is
convenient to work with both the velocity potential φ and the pseudo-streamfunction
ψ (Lundgren & Mansour 1988). This allows us to compute the normal velocity un at
the surface by taking the surface derivative of ψ rather than the normal derivative
of φ.

An expression for the pseudo-streamfunction ψ can be obtained by writing u = ∇×
B and considering the associated vector potential B = (Br, Bθ , Bz) as

B(r) = −
∫
−

Γ

µ(r ′)n′ × ∇r ′ G(r |r ′) dΓ ′ r ∈ Γ, r ′ ∈ Γ.

The integral is again a Cauchy principal-value integral whose integrand we likewise
desingularize. Here, however, axisymmetry necessitates that both Br and Bz be
identically zero so that only the azimuthal contribution of the integral remains,
as

Bθ (s) =

∫ ∞

0

[µ(s ′) − µ(s)]KB(s|s ′) ds ′, (2.7)

where

KB(s|s ′) = −
∫ 2π

0

n′ × ∇r ′ G(r |r ′)r ′ dθ ′

=
r ′

πA3

{
−rn′

zE(k)

1 − k
+

r ′n′
z + (z − z′)n′

r

k

[
2 − k

1 − k
E(k) − 2K(k)

]}
. (2.8)

Finally, from the vector potential B, we define a pseudo-streamfunction, ψ as

ψ(s) = r B · eθ = rBθ with un =
1

r

dψ

ds
. (2.9)

Given an initial φ0, then, we first solve the Fredholm integral (2.6) for the dipole
strength µ and subsequently use (2.7) to evaluate Bθ (s). Then, with knowledge of
the velocities from (2.9), we use the Bernoulli equation (2.4) to evolve φ forward in
time, while enforcing the kinematic boundary condition to evolve the surface forward
in time. The process can then be repeated with the updated φ and the new surface
profile as input. Details of the numerics are given in § 3, but before constructing them
it is fruitful first to question the admissible distributions of φ0 and, since the fluid
domain is unbounded, deduce the asymptotic behaviour of the solution near the axis
of symmetry and at large distances from it.
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Figure 2. Plots φ0(r, 0) for a Gaussian (solid line) and [J1(2r)/r]2 (dashed line).

2.4. Admissible φ0

The interior and free surface of the physical system we are modelling is subjected to a
pulse from a distant acoustic transducer whose focused nonlinearly interacting waves
realize a time-averaged (over time scales Tb � T ) energy-density field that is related
both to the Langevin radiation-pressure field and to ϕ (Elrod et al. 1989). Kino (1987)
gave the radial variation of the time-averaged energy density in the far field of such
a transducer as [J1(2r)/r]2, rendering it a candidate for ϕ0, where J1 is the first-order
Bessel function of the first kind. However, as we see in figure 2, [J1(2r)/r]2 is well
approximated by a Gaussian, especially when r � 1, and our preference is thus to
take the simple form

φ0 = ϕ|z=0 = e−r2

. (2.10)

That being said, our choice for ϕ(r, θ, z) at t = 0 must be an admissible solution to
(2.1) and the boundary conditions, and so it is, as we show in Appendix A. As an
aside we note that ϕ(r, θ, z) may be any continuous C2 function that vanishes as
r → ∞.

2.5. Asymptotic behaviour

Before proceeding numerically, we plan to map from the infinite to the finite domain,
and we want the mapping to reflect the asymptotic behaviour of the solution. In
particular, since the only independent spatial variable in the problem is the surface
arclength s, we should like to know how each of the dependent variables r , z and φ

behaves as s → 0 and s → ∞. Details are given in Appendix B.
In particular we find that the asymptotic forms for z and r at large s and t = O(1) are

given by (B 6), and the behaviour as s → 0 by (B 3) and (B 4). Finally, on substituting
(B 2), (B 4) and (B 6) into the evolution equation (2.4) for φ, the forms for ∂φ/∂t as
s → 0 and s → ∞ follow as:

∂φ

∂t
∼

∞∑
j=0

ā2j (t)s
2j = ā0(t) + ā2(t)s

2 + · · · as s → 0, (2.11)

∂φ

∂t
∼

∞∑
j=3

b̄j (t)j
1

sj
= b̄3(t)

1

s3
+ b̄4(t)j

1

s4
+ · · · as s → ∞. (2.12)

Observe that while φ0 decays exponentially fast at large s its evolution decays only
algebraically fast; and a similar analysis of (2.6) reveals the same disparity in the
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decay rates of µ. Thus, if we construct a mapping to recover the above algebraic
response there is a conflict with our choice of φ0; we address this now in § 2.6.

2.6. Decomposition

To resolve the conflict just mentioned we decompose the velocity potential into φ0 +φ

and now identify φ as the growth from φ0 as the system evolves. The numerics
then need to describe only features of φ which necessarily will decay as in (2.12),
while φ0 can be any arbitrary analytic input function that satisfies (2.1). In effect
the decomposition renders the numerical algorithm independent of the chosen φ0. In
a similar manner we decompose the dipole strength into µ0 + µ and identify µ as
the growth in µ from its initial value µ0. Then (2.4) is unchanged and, since µ0 is
specified in advance, (2.6) becomes a Fredholm integral equation for the increase in
dipole strength µ:

φ(s) =
1

2
µ(s) +

∫ ∞

0

[(µ0(s
′) + µ(s ′)) − (µ0(s) + µ(s))]Kφ(s, s

′) ds ′. (2.13)

A further benefit of this decomposition is that the derivatives of φ0 and µ0 are
always known analytically and, since they contain the bulk of the energy (at least
initially), the error in evaluating sensitive terms similar to the surface derivative of
the velocity potential d(φ0 + φ)/ds is minimal, because dφ0/ds is known exactly and
|dφ0/ds| � |dφ/ds| for small t .

3. Numerics
To proceed numerically, we first introduce a mapping from the semi-infinite line s

to the finite line η. We then express each of the dependent variables {r, z, φ, ψ, µ} in
terms of basis functions over η. Unknown, of course, are the coefficients of the basis
functions and, for reasons discussed below, we use a collocation method to deduce
those for {r, z, φ, ψ} and a Galerkin method for those relating to µ.

In order to follow the evolution of the (initially flat, z = 0) surface we place on it
Lagrangian markers, each located by its radial coordinate r(s) and vertical coordinate
z(s), and monitor them. The markers, together with the velocity potential φ(s), form
the triple {r, z, φ} that defines the primary dependent variables of the system, and
these are supplemented by the further dependent variables ψ and µ. The numerical
solution involves marching these variables forward in time.

For example, given the normal and tangential velocities u = (un, ut ) at the surface,
the location coordinates of the markers, r and z, are evolved kinematically as

dr

dt
= utnz + unnr and

dz

dt
= unnz − utnr, (3.1)

where un is given by (2.9) and ut by (3.11) below. The evolution of φ is via the
Bernoulli equation (2.4) with the partial derivative written as a material derivative,
i.e. D/Dt = ∂/∂t + u · ∇, so that

dφ

dt
=

1

2
u2

n +
dφ

ds

(
1

2
ut − dφ

ds

)
− 1

We
κ − 1

Fr
z. (3.2)

Updated values of {r, z, φ} are then used to calculate the dipole strength by solving
the Fredholm integral (2.13), after which the process is repeated.

In doing so, of course, the evolution equations (3.1) and (3.2) for r , z and φ require
computation of surface derivatives through terms such as nz ≡ dr/ds, nr ≡ −dz/ds
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and κ . Of these the curvatures, κ requires derivatives of the highest order, viz

κ = κr + κθ where κr =
dr

ds

d2z

ds2
− dz

ds

d2r

ds2
and κθ =

1

r

dz

ds
(3.3)

Here κr and κθ refer to the radial and azimuthal curvature respectively.

3.1. Mapping

Numerically it is best not to employ the primary independent variable s on an
unbounded domain. We have two choices: arbitrarily to truncate the domain at large
but finite s, or to use a mapping to transform the physical domain into a finite
computational domain. The latter is optimal, but we must be prudent in our choice
of mapping. Specifically, to concur with our analytical solutions we should choose a
mapping that depicts algebraic decay, which means that we must exclude candidate
mappings such as η = 2 tanh s − 1. In fact it is expedient to tailor-make our own
mapping, as then we can precisely control the asymptotic behaviour of the solutions
to match the known analytic solutions given in § 2.5.

In constructing such a mapping, we must require, from (B 2), (B 4) and (B 6), that
it contains all positive even powers of s as s → 0 and both odd and even negative
powers of s as s → ∞. The former requirement is readily satisfied with a term of the
form (1 + s2)−1, but this introduces only negative even powers of s for large s. In
order also to introduce negative odd powers of s for large s (without introducing
positive odd powers as s → 0) we include a second term (1 + s2)−1/2 and adjust the
relative strength of each term through a parameter α ∈ [0, 1]. For generality we can
also scale s, by replacing it by βs and adjusting the value of β , but this was not found
to be necessary. Finally, in anticipation of employing Chebyshev polynomials as basis
functions, we introduce the transformed independent variable η(s) in the transformed
domain [−1, +1) and obtain the invertible mapping

η(s) = 1 − 2

(
α

s2 + 1
+

1 − α√
s2 + 1

)
. (3.4)

Various values of α were tested but α = 1/2 worked well and was used in all the
simulations performed.

3.2. Interpolation and numerical derivatives of the surface

Interpolation is necessary when the quadrature points used to evaluate the Fredhom
integral (2.13) (and the pseudo-streamfunction (2.7)) do not coincide with the
collocation points. We must also reliably compute surface derivatives to evaluate
κ , (3.3).

In order to both interpolate and evaluate the derivatives, therefore, we expand each
dependent variable χ = {r, z, φ, ψ, µ} as a series of Chebyshev polynomials Ti(η), viz.

χ(s) = fχ (s)

N∑
i=0

C
χ
i Ti(η(s)) where χ = {z, r, φ, ψ, µ}, (3.5)

rendering our problem as one of finding the unknown coefficients C
χ
i . Boundary

conditions, such as dr/ds|s=0 = 1 and dz/ds|s=0 = 0 are implemented by the
multiplication of a predetermined function fχ , chosen to ensure the correct asymptotic
behaviour as s → 0 and s → ∞. For example, the function chosen for z, φ and µ is
fz(s) = fφ(s) = fµ(s) = (1 + s2)−3/2 = f(s), say.

We note, however, that since the expansions for r and z are determined
independently, the arclength metric will not in general be identically unity. Thus
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either we enforce unity by expressing r or z through the respective integrals

r = ±
∫ s

0

ds ′

√
1 −

(
dz

ds ′

)2

or z = ±
∫ s

0

ds ′

√
1 −

(
dr

ds ′

)2

,

or we ensure unity by normalizing the derivatives by the computed arclength metric,
which is equivalent to saying that rather than being the true arclength, s is a
Lagrangian variable that approximates (albeit closely) the arclength. The former
is more computationally intensive, because it involves numerical quadrature and
keeping track of when the surface ‘folds over’, in order to choose the correct sign for
the integrand. For that reason we opt to normalize.

Lastly, with the exception of C
µ
i , discussed below in § 3.3, the coefficients of

each Chebyshev polynomial C
χ
i were determined through collocation using the FFT

algorithm given by Fornberg (1996). The basis-function number N =64 was found to
provide an adequate balance between resolution and computational effort for most
of the computations performed.

3.3. Solution of Fredholm integral

It remains to determine the unknown coefficients C
µ
i . To do this we note that the

Fredholm integral (2.6) for µ is linear in µ, which means that we may take a Galerkin
projection of (2.6) to obtain a linear system for the C

µ
i .

So, after substituting the expansions for φ and µ given in (3.5) into (2.13), we get

fφ(s)

N∑
i=1

C
φ
i Ti(η(s)) = 1

2
fµ(s)

N∑
i=1

C
µ
i Ti(η(s)) +

∫ ∞

0

�µ(s, s ′)Kφ(s|s ′) ds ′ + R(s), (3.6)

where

�µ(s, s ′) = µ0(s
′) − µ0(s) +

N∑
i=0

�µi(s, s ′)

and

�µi(s, s ′) = fµ(s ′)Cµ
i Ti(η(s ′)) − fµ(s)Cµ

i Ti(η(s)).

Then, to determine the unknown coefficients, we demand that the residual R(s)
normalized by f(s) be orthogonal with respect to the N basis functions, i.e. the
Chebyshev polynomials Ti(η) (for details see Phillips & Wu 1994). We then find that

C
φ
j =

(
1
2
δij + Mij

)
C

µ
i + Ai, (3.7)

where δij is the Kronecker delta and

Mij =

∫ +1

−1

1

f[s(η)]

{∫ ∞

0

�µi(s, s ′)Kφ(s|s ′) ds ′
}

Tj (η(s))√
1 − η2

dη (3.8)

with

Aj =

∫ +1

−1

1

f[s(η)]

{∫ ∞

0

[µ0(s
′) − µ0(s)]Kφ(s|s ′) ds ′

}
Tj (η(s))√

1 − η2
dη. (3.9)

Equation (3.7) is a linear algebraic system where Mij is fully populated, so an LU

decomposition is used to solve the system for C
µ
i . Prior to solving (3.7), however, we

must evaluate the integrals within Mij and Aj ; we use Gauss–Kronrod quadrature
for the inner integral (shown in curly brackets; see also § 3.4 below) and an FFT for
the outer integral.
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3.4. Numerical quadrature

The inner integrals in (3.8) and (3.9) were evaluated using Gauss–Kronrod quadrature.
The strength of the Gauss–Kronrod quadrature over Gauss–Legendre lies in its
adaptive capabilities, in that we can prescribe a required accuracy and then quadrature
points are added iteratively until the desired accuracy is achieved. It is also efficient
computationally, as evaluations of the integrands in the previous iteration are reused
with adjusted weights. Nie & Baker (1998) employed the same technique in their
vortex-sheet calculations. For the computations herein we typically set the relative
accuracy ε to 10−12.

We must also pay attention to the weak singularity in the integrand of (3.8). This
singularity occurs because the derivative of the integrand becomes discontinuous as
the integration point s ′ approaches the source point s, even though the integrand
itself is continuous. For example, on expanding the integrand in (3.8) about s we
observe the asymptotic behaviour

[µ(s ′) − µ(s)]Kφ ∼ (s − s ′) log |s − s ′|, (3.10)

which suggests that in the interval [s − δs, s + δs], the integral is O(δs2 log |δs|). In
consequence we evaluate the integral in two parts, the first in the interval [0, s − δs]
and the second in the interval [s + δs, ∞), with δs chosen to ensure that the relative
accuracy ε prescribed for the Gauss–Kronrod quadrature is preserved. In this way,
we avoid evaluating the integrand at or near the singularity. The same strategy is
adopted for evaluating ψ in (2.7).

3.5. Choice ut

Because tangential deformations do not affect the shape of the surface, ut may be
chosen in any convenient way. The usual choice, ut = dφ/ds, is commonly termed
the Lagrangian frame, because each marker evolves with its physical velocity. The
disadvantage of the Lagrangian frame, however, is that it leads to clustering of the
marker points at some locations on the surface, which in turns leads to numerical-
stability issues for long-time evolution. Since the time step �t required for stability
scales with the minimum distance between successive markers, an ever-decreasing �t

is required as the surface evolves, making the Lagrangian frame computationally
inefficient. Furthermore, clustering has the result that some regions are under-
resolved and others are over-resolved. So, in order to maintain an acceptable level of
resolution, either more points have to be inserted or the points have to be remeshed
or redistributed, which again increases the computational cost, not to mention the
errors due to repeated remeshing and redistribution.

A way to circumvent these problems is to impose a choice of ut that renders the
distance between successive marker points constant in time. This idea was proposed
by Hou et al. (1994) and has been successfully used by them and others to solve
two-dimensional and axisymmetric free-surface problems involving surface tension in
both finite and periodic domains (Hou et al. 1997, 2001; Nie 2001). We will follow
suit; ut is then determined through the curvature and the normal velocity un as

ut (s) =

∫ s

0

un(s
′)κr (s

′) ds ′. (3.11)

Finally we point out that this choice (for ut ) is especially useful in a Chebyshev
collocation implementation because s, and thus η, for each collocation point is then
fixed in time. Thus the values at the collocation point can be used directly, without
interpolation back to the Chebyshev point.



Impulsively generated jets, waves and drops 389

3.6. Time integration and filtering

An explicit fourth-order Runge–Kutta scheme was used for time integration. This
was chosen over a full or semi-implicit scheme because of the nonlinearity of the
evolution equations and, more importantly, the need to solve a Fredholm integral
equation as an intermediate step. For the same reasons, collocation was chosen over
Galerkin projection in the evaluation of the nonlinear evolution equations (2.7), (3.1)
and (3.2) to simplify the numerical implementation. The disadvantage of this choice
is that aliasing errors are introduced, which, if left uncontrolled, quickly amplify and
dominate the calculation. A Fourier-type filter of the form (Hou et al. 1994)

C
χ
jfiltered

= e−γ (j/N)mC
χ
j for χ = {z, r, φ, ψ} (3.12)

was thus used to remove the high-wavenumber instability induced by aliasing errors.
Filtering was used to remove all wave components whose amplitude fell below a
certain threshold value ε. Typical values used for the computations were γ = 10,
m = 10 and ε = 10−12. The filters were applied before the start of each Runge–Kutta
step.

4. Results
Given an impulse φ0(r), which in dimensional form is a measure of the incident

acoustic pressure and period (see § 5.3 below), the initially flat free surface evolves
subject to two parameters, the Froude number, which is a measure (inverse) of the
role of gravity, and the Weber number, which reflects (inversely) the role of surface
tension through the local surface curvature. In discussing our results, therefore, we
first investigate (in § 4.1) the double limit in which neither gravity nor surface tension
play a role, viz. We−1 → 0, Fr−1 → 0. We then remove one driving force while we
investigate the other (§ § 4.2, 4.3). Finally, in § 4.4, we allow both gravity and surface
tension to play a role.

4.1. The double limit: We−1 → 0, Fr−1 → 0

Our problem is analogous to the evolution of an initially flat vortex sheet whose
strength is proportional to φ0(r). Vortex sheets are susceptible to a Kelvin–Helmholtz
instability; indeed, the smaller the wavelength of the instability the faster the growth
rate. Mathematically this may suggest that the initial-value problem for the evolution
of the interface is ill-posed (Moore 1979). Computationally, the absence of any
mechanism to damp the high-wavenumber modes means they quickly amplify and
dominate the calculation (Moore 1976).

Since we are not modelling the air above the free surface it is inappropriate to
label any instability we encounter as a Kelvin–Helmholtz instability. Nevertheless we
expect to find the manifestation of a like instability in the double limit We−1 → 0 and
Fr−1 → 0 and, of course, we do so, as we see in figure 3(a). Here the dashed curve in
the inset indicates the presence of the high-frequency modes, which, in this instance,
prevented the simulation from being carried out reliably for t > 0.66. This cutoff was
not affected by doubling or halving the time step in the calculation but was affected
by altering the number of surface marker points. Thus, since the latter is tantamount
to a high-wavenumber cutoff in the calculation, our inference is that the instability is
numerical.

Of course, in the absence of any restoring mechanism, and since self-induction is
symmetrical about r = 0, we expect the axisymmetric surface jet to reflect the initial
condition (B 1) always and not to form a droplet, and this is the case, at least for
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Figure 3. The surface profile, z vs. r , for various Froude numbers such that 1/Fr2 = 0, 0.1, 1,
with We−1 = 0. We use the following notation: start time [time increment between profiles]
terminal time. Then we have (a) t = 0 [0.1] 0.66, (b) t = 0 [0.2] 2.28 and (c) t = 0 [0.2] 2.90.
The inserts shows the profiles at time steps immediately prior (solid lines) to the onset of a
numerical instability (dashed line).

the duration of the calculation. Moreover, were the calculation to proceed for times
t > 0.66, there would be no limit on the amplitude and for that reason we would refer
to it as a jet.

4.2. Infinite Weber number (We−1 → 0) and finite froude number

Gravity acts to bound the amplitude of the axisymmetric surface jet, rendering it a
wave. It is unclear whether gravity is able to suppress the instability. To gain insight
into this question we repeated the simulation at finite Froude number, specifically at
Fr−1 = 0.1 and Fr−1 = 1. The results are presented in figures 3(b) and 3(c). We found
(see the insets) that instability overwhelms the calculation before gravity limits the
amplitude of the wave. Nevertheless gravity does act to retard the onset of instability,
thereby allowing the system to evolve over longer times, namely t ≈ 2.28 and t ≈ 2.90
as compared with t ≈ 0.66 in § 4.1.

To understand the longer evolution, we note that whereas damping due to gravity
is local and proportional to the local elevation z, the instability is not restricted to
wavenumbers of O(z−1) and may arise everywhere (i.e. at all r). In other words,
although gravity acts to damp unstable modes of wavenumber greater than O(z−1)
locally (i.e. at particular r values), it has a diminishing effect on modes of wavenumber
less than O(z−1). This suggests that gravity-induced damping will never be sufficient to
self-regulate all modes. In contrast, the damping due to surface tension is proportional
to the curvature. So, since the high-wavenumber mode induces high curvature, there
is a self-checking mechanism in place to inhibit the growth of such modes, as we shall
see in the following section.



Impulsively generated jets, waves and drops 391

0

1

2

3

4

5

6

0 1 2 3

z

(a)
We–1 = 0.01, Fr–1 = 0

(b)
We–1 = 0.05, Fr–1 = 0

(c) We–1 = 0.10, Fr–1 = 0

2.4

2.2

2.0

1.5

0.1 0.2
2

3

6

5

4

0.50 1.0

0

1

2

3

4

5

6

2

3

6

5

4

0.50 1.0

0

1

2

3

4

5

6

0 1 2 3 0 1 2 3
r r r

Figure 4. Surface profiles of z vs. r at various inverse Weber numbers We−1. The time interval
between successive snapshots is 0.1, 0.45 and 0.6 in (a), (b) and (c) respectively. In (a) the
Weber number is such that We−1 <We−1

c . Here instability occurs even in the presence of
surface tension. This is evident in the insert, which shows profiles at time steps (solid lines)
leading up to the onset of the instability (dashed line). The insets in (b) and (c) show the
surface profile just before the drop is formed; panel (c) is the case studied by Elrod et al.
(1989).

4.3. Finite Weber number in zero gravity (Fr−1 → 0)

The effects of surface tension are twofold: first, it acts to render the problem well-
posed and second, it acts to regularize the instability (Pullin 1982). That said, we
should not expect all We−1 > 0 to suppress the instability; rather, suppression is likely
only above some critical threshold, We−1

c say, beyond which the computation can
be carried out reliably over times long with respect to T . Our first task then is to
determine We−1

c . We should then like to know how surface tension affects the diameter
of the droplets and the velocity at which they are ejected. So, to this end, we performed
computations over a range of Weber numbers from We−1 = 0 to We−1 = 0.15 and,
to exclude the role of gravity, we set Fr−1 = 0. The time evolution for three different
Weber numbers is shown in figure 4.

A typical result for We−1 � We−1
c is presented in figure 4(a). Here, as seen in the

inset, high-frequency contributions indicative of the instability lead to a non-smooth
surface profile immediately prior to termination of the simulation. The instability
dominates until We−1

c ≈ 0.045, above which we are able to follow the evolution of
the surface to near-pinchoff. But we cannot predict beyond pinchoff because the
continuum hypothesis (and thus our formulation) then breaks down. Pinchoff is the
point at which the radial coordinate of the surface vanishes at a position s > 0. We
see this in figures 4(b) and 4(c), where of course We−1 >We−1

c . Observe too that the
size of the drop-to-be increases as We−1 increases. However, since a higher We−1
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Figure 5. Plots of centreline velocity v|r=0 against time for Fr−1 = 0 and various inverse
Weber numbers We−1. The dotted lines indicate cases where the simulation terminated due to
instability. The solid lines indicate cases where droplets were formed: the lines terminate at the
time at which this happened; see also figure 6(a). The dashed lines indicate cases where drops
did not form owing to the level of surface tension.

0

1

2

3

4

5

6

1 2 3 4 5 6

z|r=0

t

We–1 = 0.13

(a)

1

2

3

4

5

6

7

0 0.02 0.04 0.06 0.08 0.10 0.12

t0

We–1

We–1 = 0.045
We–1 =
 0.105

Drops did not 
form due to 
instability

Drops formed Drops 
did not 
form
owing to
strong
surface
tension

(b)

We–1 = 0.01

Figure 6. Plots of (a) centreline elevation z|r=0 against time for Fr−1 = 0 and various inverse
Weber numbers We−1. The dotted lines (lying above the solid lines) indicate cases where the
simulation terminated due to instability. The solid lines indicate cases where droplets were
formed. The dashed lines indicate cases where drops did not form owing to the level of
surface tension. The lines terminate at the time t0 at which the drop formed or the calculation
terminated. In (b) the terminal time t0 is shown against We−1.

implies stronger surface tension and thus a higher resistance to the flow, the height
and velocity at which the droplet is ejected is reduced.

Figure 5 details the variation in the centreline velocity and figure 6(a) gives
the centreline elevation as a function of time. Cases that failed due to numerical
instabilities prior to the formation of the drops, i.e. for We−1 < We−1

c , are indicated
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Figure 7. Time evolution of the surface profile when We−1 = 0.12 and Fr−1 = 0. Here a droplet
was not formed; rather a peak amplitude was attained at about t = 3.9 and the fluid then
collapsed on itself under the restoring effect of surface tension, resulting for t � 6.5 in a
standing wave.

with dotted lines, while the solid lines indicate Weber numbers where we were able
to carry the simulation near to the formation of a drop, viz. for We−1 >We−1

c . Of
course whether We−1

c is the actual physical demarcation at which single drops form
or an inflated value more representative of the value of We−1 at which numerical
instabilities are brought under control is inconclusive.

Nevertheless, we do have an upper bound, We−1
0 . Specifically, since a higher inverse

Weber number reflects a greater resistance to the flow, there comes a point at which
the initial energy imparted to the system through φ0 is insufficient to overcome the
restraints of surface tension. This limiting case is evident in figure 5 as the curve where
the centerline velocity asymptotes to zero just as the droplet is formed, suggesting
that We−1

0 ≈ 0.105.
Cases for We−1 > We−1

0 in figure 5 are indicated with dashed lines. Thus, in addition
to a region for We−1 < We−1

c dominated by the instability and a second for We−1 ∈
[We−1

c , We−1
0 ] in which single droplets form, the case We−1 >We−1

0 highlights a third
region. Herein the centreline velocity changes from positive to negative in accord
with the free surface, which reaches a maximum height and then subsides, as evident
in figure 6(a). Indeed, beyond We−1

0 the fluid is no longer capable of ejecting a
droplet. Rather, the third region highlights the formation of an axisymmetric standing
wave which grows and then subsides. The time evolution as a series of free-surface
‘snapshots’ of one such case at We−1 = 0.12 is presented in figure 7.

The curves in figures 5 and 6(a) finish at t0, the time at which the calculation
terminated because of an instability, surface tension or the formation of a droplet.
These times are plotted in figure 6(b). Finally, we emphasize that these simulations
are performed with gravity set to zero, so that the restoring force is entirely due to
surface tension; we shall allow for non-zero gravity in § 4.4.
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4.4. Finite Weber number and Finite Froude number

We turn our attention now to cases where both We−1 and Fr−1 are non-zero. In doing
so we fixed the inverse Weber number We−1 as 0.08, which is within the range of
Weber numbers where droplets form under zero gravity, and repeated the simulation
over more than an order of magnitude of Froude numbers, including negative values.
The results are presented in figure 8.

Observe that except for the height at which the droplets are formed, which is
clearly a gravitational effect, there are no major differences in the generic formation
of the drops for Fr−1 ∈ [−0.1, 0.1]. Indeed, as we see in figures 8(a–c), the size of the
droplets is roughly the same even when we reverse the direction of gravity (relative to
z). Eventually, however, gravity overrides the impulse and the standing axisymmetric
wave so formed rises and then collapses upon itself, much as we would expect a
standing gravity wave to behave. Inverted tear-shaped droplets can then form during
the collapse process, as we see in figures 8(d) and 8(e). Observe, however, that while
8(d) depicts a double-point pinchoff during collapse, 8(e) highlights a single-point
collapse. Further increases in Fr−1 depict only a collapsing wave. Finally, unlike the
surface-tension-dominated collapse in figure 7, which rapidly damps the wave with
minimal oscillation, gravity damping under weak surface tension is much slower, with
noticeable oscillation, as shown in figure 8(f ).

4.5. Phase diagram

Our results are summarized in figure 9, in which we plot Fr−1 versus We−1. For
example, with Fr−1 = 0.125 we observe, with increasing We−1 above the instability
cutoff We−1 ≈ 0.045, first the formation of spherical drops-then inverse tear-shaped
drops and finally axisymmetric standing waves. Spherical drops no longer form if
Fr−1 = 0.5, however; rather, inverted tear-shaped drops followed by axisymmetric
waves. Lastly, no drops form if Fr−1 = 1, only axisymmetric waves. Not included in
figure 9, of course, is the point representing the double limit Fr−1 → 0, We−1 → 0 at
which axisymmetric jets form.

5. Discussion
5.1. Finite-time singularity

The problem under study here is an example where a singularity is formed in finite
time, the bifurcation being a topological singularity where the surface self-intersects
at time t = t0. Of particular interest is how the system approaches this singularity. This
was first addressed in the context of a pendant drop evolving from the end of a nozzle,
an event that Peregrine, Shoker & Symon (1990) captured in a very clear sequence
of photographs. These photographs show that the liquid region consists of an almost
spherical drop connected (immediately prior to the bifurcation) through a liquid
bridge to a conically shaped region not dissimilar to that in figures 8(a–c). Eggers
(1993) modelled the phenomenon using a long–wave approximation of the Navier–
Stokes equations, which Eggers & Dupont (1994) used finite-difference techniques to
solve. Their results compare well with the photographs. In contrast Schulkes (1994)
questioned how the pendant drop evolves when the volume of the drop increases
steadily with time. He makes no long-wave approximation and proceeds instead using
a boundary-integral formulation assuming, as we do, an inviscid irrotational flow. His
results compare very well with the photographs of Peregrine et al. (1990).

Mathematically, the self-intersection of the surface may be precisely expressed as
r(s �= 0) = 0, where the radial coordinate vanishes for some location s �= 0. To proceed,
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Figure 8. Surface profiles of z vs. r for We−1 = 0.08 and inverse Froude numbers Fr−1

from −0.1 to 1. Successive ‘snapshots’ are relative to the terminal times t0, which were, for
cases (a)–(f ) respectively, t0 = 5.05, 5.20, 5.43, 5.31, 4.86 and 4.54. The time interval between
successive snapshots is 1.0 in cases (a)–(c) and 0.5 in cases (d)–(f ). For Fr−1 � 0.1 an essentially
spherical drop is formed. At larger levels of gravity we observed (inverted) tear-shaped drops
that form as the wave collapses upon itself. In particular (d) shows a double pinchoff while
(e) shows a single pinchoff. No drop occurs in (f ), where the wave collapses and then decays.
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Figure 9. Phase diagram of Fr−1 vs. We−1 showing the regions of instability, spherical drops,
inverse tear-shaped drops and axisymmetric standing waves. Not shown is the double limit
Fr−1 → 0, We−1 → 0 at which axisymmetric jets form.

therefore, we define a radius, rmin say, and track it as the surface evolves. Thus let
rmin be the radial coordinate of the point on the surface satisfying the following
two conditions:

dr

ds
=0 and

d2r

ds2
> 0, (5.1)

which decree that there will be a solution for rmin only after the surface becomes verti-
cal at some location.

The variation in rmin with time is given in figure 10(a). Here the ‘like-shapes’ of
various cases suggest the existence of a self-similar solution and, because of the infinite
slope of the curves at t = t0, that the solution exhibits a power-law-type singularity
of the form (t0 − t)γ , where the exponent γ < 1. To investigate this further we ploted
log |rmin | against log |t0 − t | and found that γ ≈ 2/3.

Power-law behaviour can also be argued on dimensional grounds, as Keller &
Miksis (1983) did, albeit in the context of a two-dimensional geometry after
pinchoff, rather than a three-dimensional axisymmetric geometry prior to pinchoff.
We start from the assumption that the behaviour should, near the singularity time,
be independent of the initial conditions and thus that the relevant (dimensional)
parameters are σ , ρ, r∗

min and t∗
0 − t∗. From this set of parameters, the Buckingham pi

theorem indicates that we can form only one dimensionless group, which must itself
be a universal constant, K say. Then

ρr∗3
min

σ (t∗
0 − t∗)2

= K3,

from which we obtain a scaling relationship in terms of the Weber number:

rmin = K(t0 − t)2/3 We−1/3, (5.2)
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Figure 10. Plots of rmin (a) against time for various inverse Weber numbers We−1 and (b) in
a collapsed form from (5.2), depicting the exponent γ = 2/3. The symbols are as in figure 9.
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Figure 11. Plot of the universal constant K−1 from (5.2) against rmin for various inverse Weber
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which (5.1) is first satisfied. The symbols [+, ×, ∗, �, �, �] indicate respectively We−1 = [0.05,
0.06, 0.07, 0.08, 0.09, 0.1].

which likewise suggests γ =2/3. The results clearly follow this scaling, as we see in
figure 10(b). Keller & Miksis (1983) likewise reported γ = 2/3, while Eggers & Dupont
(1994), who included viscosity, found that the exponent is weakly time dependent but
not far from 2/3.

Finally, of particular interest is the value of K, and so we ploted K = rmin(t0 − t)−2/3

We1/3 in figure 11. Here we see that K is independent of rmin for much of the period
for which (5.1) is satisfied and that the universal constant K =0.45 ± 0.025.

5.2. Critical Weber number

The basis for the present study was to explore a possible mechanism by which
focused ultrasound can damage the lung. Our hypothesis behind the study is that
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Figure 12. Plots of (a) log(v|r=0) vs. log(We−1
0 − We−1) and (b) log(rdrop) against log(We−1).

The slopes show that the the power-law exponents δ1 and δ2 are 1 and 1/2, respectively.

focused ultrasound can act to eject droplets of bodily fluids, which then penetrate
the bubble-wrap-like sacs of the lung pleural surface, allowing them to fill with
blood. With this premise, an immediate question is whether there exists a particular
Weber number which maximizes the amount of energy or momentum imparted to
the emitted droplets, so as to effect maximum damage to the pleural surface. To this
end, we need to know how the velocity and the size of the emitted droplets depend
on the Weber number. Of course the Froude number may too play a role, although
as we found earlier it does not have a significant effect on the size of the droplet, so
we will for the moment ignore it.

For convenience we use the centreline velocity v|r=0 to represent the velocity of
the droplets and begin by noting that the cutoff Weber number at which drops are
emitted, We−1

0 , is by definition the limiting case where the droplet has vanishing
velocity. Hence, it is reasonable to postulate that the droplet emission velocity scales
as (We−1

0 − We−1)δ1 , where δ1 is to be determined.
Of course, in addition to rmin , at any time the droplet has a maximum radius,

defined in accordance with (5.1), except that now d2r/ds2 < 0. So, as a measure of
droplet size we use the maximum radius of the drop, rdrop say, when the system reaches
the singularity at t = t0. Here too we postulate a power-law relationship between We
and rdrop , namely rdrop ∝ (We−1)δ2 , where δ2 is to be determined. By this hypothesis,
we are assuming that droplets are formed for all We−1 above We−1

c and below We−1
0 .

That said, we emphasize that it is not clear whether our We−1
c , which is necessary for

numerical stability, also credibly measures the physical lower bound at which droplets
form or whether the physical value is significantly less than We−1

c . Nevertheless, we
obtained the power-law exponents [δ1, δ2] = [1, 1/2], as presented in figures 12(a) and
12(b), and thus the following scalings:

rdrop ∼ We−1/2 and v|r=0 ∼ We−1
0 − We−1 for We−1 ∈

[
We−1

c , We−1
0

]
.

The fact that rdrop increases while v|r=0 decreases with We−1 suggests the existence of
a stationary point where the emitted droplet momentum and energy are maximized or
minimized. To expose the existence of these stationary points, we note that momentum
and energy scale as follows:

momentum ∼ r3
dropv|r=0 ∼

(
1

We

)3/2 (
1

We0

− 1

We

)
,
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Figure 13. Plots of unity-normalized (a) drop momentum and (b) energy, against the inverse
Weber number, We−1.

energy ∼ r3
dropv|2r=0 ∼

(
1

We

)3/2 (
1

We0

− 1

We

)2

and plot each in figure 13.
We emphasize that the values for the critical Weber numbers so obtained are not

as important as the fact that such critical Weber numbers exist. Furthermore, the
particular Weber number that actually maximizes the droplet momentum and droplet
energy may depend on other factors, for example, the Froude number. However, while
the Froude number does have a direct effect on v|r=0, it does not significantly affect
the size of the droplet. Therefore, Fr can only influence the location of the maximum
point in We space, not its existence. Avoiding this critical Weber number is crucial to
minimizing lung damage.

5.3. Mechanical index

Localized peaks in pressure can also play a role in damaging the lung. To that end the
US Food and Drug Administration (FDA) sets limits through a dimensional quantity
denoted the mechanical index (MI), defined as the estimated peak rarefactional
pressure in vivo p∗

r (in MPa), divided by the square root of the centre frequency of
the acoustic beam, f (in MHz). FDA regulations allow an MI of up to 1.9 for all
applications except ophthalic ones, for which the maximum is 0.23. Of interest here,
of course, is an estimate of the MI for the mechanism we have studied.

We begin with (2.2) and note that, when the flat free surface is subjected to an
impulse in pressure, we have p∗

r ≡ p∗
max while u∗ ≈ 0. Then, since p∗ is actually the

change in bulk pressure owing to the nonlinear interaction of the periodic acoustic
pressure evaluated over one acoustic cycle, we have Φ = p∗

r Tλ/ρ = p∗
r /fρ. The physics

further requires that the focal zone measured by L be at a minimum comparable with
the acoustic wavelength λ= c/f , so that Lf/c � O(1) where c is the speed of sound.
Thus if we let L = hc/f (as in § 1), where h � O(1) is a positive constant, and recall
that We = Φ2ρ(Lσ )−1 then

MI =
p∗

r√
f

= h1/2(ρσc)1/2We1/2

or in nondimensional form
MI

h1/2(ρσc)1/2
= We1/2. (5.3)
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Now c = 1500 m s−1 and ρ = 1059 kg m−3 in blood and soft tissue, while σ = 56 ×
10−3 Nm−1 (in blood), yielding (ρσc)1/2 ≈ 0.3MPa MHz−1/2. So, since gravity is absent
in (5.3) and We1/2 ∈ (3.09, 4.71) in the absence of gravity (see § 4.3) then, assuming
the smallest admissible value for h ( ≈ 0.3), droplets will be ejected for MI > 0.5. Of
course the ejection of droplets, even at the critical We (Weber number) mentioned in
§ 5.2, does not guarantee damage to the lung, but it does provide a mechanism for
damage, particularly since h may well exceed unity.

Appendix A. Admissible ϕ0

To determine whether ϕ(r, θ, z) at t = 0 is an admissible solution to (2.1) and the
boundary conditions, we require a general solution to (2.1). In building that solution
we first note that (2.1) is separable. Next, in order to satisfy the z → −∞ boundary
condition, it is necessary that the solution in z takes the form e�z, with � > 0. Lastly
we observe that the radial solution is expressible as a Fourier transform, which, in
axisymmetric conditions, reduces to a Hankel transform that necessarily satisfies the
r → ∞ boundary condition. The general solution to (2.1) is then

ϕ(r, z) =

∫ ∞

0

ϕ̂(�)�e�zJ0(�r) d�, (A 1)

where ϕ̂(�) can be thought of as a spectrum with wavenumber � and J0 is the zeroth-
order Bessel function of the first kind. To be admissible, therefore, any candidate
ϕ(r, z) must be expressible in the form (A 1) or, equivalently, any candidate φ̂(�) that
renders (A 1) bounded and everywhere well defined realizes an admissible candidate
ϕ(r, z).

On setting z = 0, therefore, and assuming (2.10), the inverse Hankel transform
indicates that ϕ̂0 = e−�2/4. Then, on substituting ϕ̂0 back into (A 1) with z now arbitrary,
we find that ϕ(r, z) is indeed bounded and everywhere well defined. In short, we are
justified in using (2.10).

Appendix B. Asymptotic behaviour
Our intention here is to determine the asymptotic behaviour of the solution. In

particular, since the only independent spatial variable in the problem is the surface
arclength s, we should like to know how each of the dependent variables r , z and φ

behaves as s → 0 and s → ∞.
Our starting point is (2.6), where, since z is identically zero at t = 0, the integrand

vanishes, requiring µ|t=0 = µ0 = 2φ0. Then, for the Gaussian φ0 we have chosen, the
initial normal velocity follows analytically as un =

√
πM(3/2, 1, −r2), where M is the

confluent hypergeometric function (see e.g. Chapter 13 in Abramovich & Stegun
1965).

Given the impulse velocity field, our task is to integrate forward in time numerically
and so the analysis to follow is exact in a time-discretized sense. Then, since z = 0
and r = s initially, we find for t > 0 but t � 1 that z|t�1 ≈ unt + O(t2), at which stage
the surface profile is

z|t�1 ≈
√

πM(3/2, 1, −s2)t + O(t2). (B 1)

Then, with knowledge of the asymptotic behaviour of M (from Abramovich & Stegun
1965) for small and large values of s, we express each limit as a similar series in which
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the coefficients depend upon time, viz.

z|t�1 ∼
∞∑

j=0

â2j (t)s
2j = â0(t) + â2(t)s

2 + · · · as s → 0 (B 2)

z|t�1 ∼
∞∑

j=1

b̂2j+1(t)
1

s2j+1
= b̂3(t)

1

s3
+ b̂5(t)

1

s5
+ · · · as s → ∞. (B 3)

Asymptotic expansions for r then follow by requiring that the arc length metric be
identically equal to unity, as (

dr

ds

)2

+

(
dz

ds

)2

= 1,

to yield

r |t�1 ∼ s +

∞∑
j=1

ã2j+1(t)s
2+1 = s + ã3(t)s

3 + · · · as s → 0 (B 4)

r |t�1 ∼ s + b̃0(t) +

∞∑
j=1

b̃2j+5(t)
1

s2j+5
= s + b̃0(t) + b̃7(t)

1

s7
+ · · · as s → ∞. (B 5)

Of interest, however, are expansions for r and z for larger t and these are not
quite as (B 2)–(B 5), because of the back effect of the constant of integration b̃0 on
the asymptotic behaviour of z. Physically we can interpret b̃0 as the ‘lengthening’
of the fluid surface as it deforms, so b̃0 is, in general, non-zero. Indeed, since the
surface is initially flat, any deformation will increase the total surface arclength. In
other words, although r → ∞ as s → ∞, the constant b̃0 = lims → ∞[r(s) − s] �= 0. The
effect of b̃0 becomes significant in subsequent time steps as it cascades through the
evolution equations, producing negative even powers of s (in addition to the previous
odd powers) in the asymptotic expansion for z for large s. This in turn modulates the
behaviour of r at large s, because r and z are related via the arclength metric.

Thus for t =O(1) and large s we have

z ∼
∞∑

j=3

b̂j (t)
1

sj
= b̂3(t)

1

s3
+ b̂4(t)

1

s4
+ · · · as s → ∞

r ∼ s + b̃0(t) +

∞∑
j=7

b̃j (t)
1

sj
= s + b̃0(t) + b̃7(t)

1

s7
+ b̃8(t)

1

s8
+ · · · as s → ∞,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(B 6)

while the behaviour as s → 0 remains unchanged.
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